There is a key problem in the medical visual question answering task that how to effectively realize the feature fusion of language and medical images with limited datasets. In order to better utilize multi-scale information of medical images, previous methods directly embed the multi-stage visual feature maps as tokens of same size respectively and fuse them with text representation. However, this will cause the confusion of visual features at different stages. To this end, we propose a simple but powerful multi-stage feature fusion method, MF2-MVQA, which stage-wise fuses multi-level visual features with textual semantics. MF2-MVQA achieves the State-Of-The-Art performance on VQA-Med 2019 and VQA-RAD dataset. The results of visualization also verify that our model outperforms previous work.
translated by 谷歌翻译
知识蒸馏(KD)已广泛发展并增强了各种任务。经典的KD方法将KD损失添加到原始的跨熵(CE)损失中。我们尝试分解KD损失,以探索其与CE损失的关系。令人惊讶的是,我们发现它可以被视为CE损失和额外损失的组合,其形式与CE损失相同。但是,我们注意到额外的损失迫使学生学习教师绝对概率的相对可能性。此外,这两个概率的总和是不同的,因此很难优化。为了解决这个问题,我们修改了配方并提出分布式损失。此外,我们将教师的目标输出作为软目标,提出软损失。结合软损失和分布式损失,我们提出了新的KD损失(NKD)。此外,我们将学生的目标输出稳定,将其视为无需教师的培训的软目标,并提出了无教师的新KD损失(TF-NKD)。我们的方法在CIFAR-100和Imagenet上实现了最先进的性能。例如,以Resnet-34为老师,我们将Imagenet TOP-1的RESNET18的TOP-1精度从69.90%提高到71.96%。在没有教师的培训中,Mobilenet,Resnet-18和Swintransformer-tiny的培训占70.04%,70.76%和81.48%,分别比基线高0.83%,0.86%和0.30%。该代码可在https://github.com/yzd-v/cls_kd上找到。
translated by 谷歌翻译
最近,对深度学习进行了广泛的研究,以加速动态磁共振(MR)成像,并取得了令人鼓舞的进步。但是,如果没有完全采样的参考数据进行培训,当前方法可能在恢复细节或结构方面具有有限的能力。为了应对这一挑战,本文提出了一个自我监督的协作学习框架(SelfCollearn),以从无效的K-Space数据中进行准确的动态MR图像重建。拟议的框架配备了三个重要组成部分,即双网络协作学习,重新启动数据增强和专门设计的共同培训损失。该框架可以灵活地与数据驱动的网络和基于模型的迭代未滚动网络集成。我们的方法已在体内数据集上进行了评估,并将其与四种最新方法进行了比较。结果表明,我们的方法具有很强的能力,可以从无效的K空间数据捕获直接重建的基本和固有表示形式,因此可以实现高质量且快速的动态MR成像。
translated by 谷歌翻译
平均老师(MT)方案在半监督对象检测(SSOD)中被广泛采用。在MT中,通过手工制作的标签分配,采用了由教师的最终预测(例如,在无最大抑制(NMS)后处理之后)提供的稀疏伪标签(例如,在无最大抑制(NMS)后处理)。但是,稀疏到密集的范式使SSOD的管道复杂化,同时忽略了强大的直接,密集的教师监督。在本文中,我们试图直接利用教师的密集指导来监督学生培训,即密集至密集的范式。具体而言,我们建议逆NMS聚类(INC)和等级匹配(RM),以实例化密集的监督,而无需广泛使用的常规稀疏伪标签。 Inc带领学生像老师一样将候选箱子分组为NMS中的群集,这是通过学习在NMS过程中揭示的分组信息来实现的。在通过Inc获得了与教师相同的分组计划后,学生通过排名匹配进一步模仿了教师与聚类候选人的排名分配。借助拟议的Inc和RM,我们将密集的教师指导集成到半监督的对象检测(称为DTG-SSOD)中,成功地放弃了稀疏的伪标签,并在未标记的数据上提供了更有信息的学习。在可可基准上,我们的DTG-SSOD在各种标签率下实现了最先进的性能。例如,在10%的标签率下,DTG-SSOD将监督的基线从26.9提高到35.9地图,使以前的最佳方法软教师的表现优于1.9分。
translated by 谷歌翻译
音频命令是一种首选的沟通媒介,可将检查员保持在半自治无人机进行的民用基础设施检查环境中。为了了解一组异质和动态检查员的特定工作命令,需要为小组成本开发一个模型,并在组更改时很容易适应。本文的动机是建立一个具有股票分布的架构的多任务深度学习模型。该体系结构允许两个分类任务共享功能提取器,然后通过功能投影和协作培训在提取功能中交织在一起的特定主题和关键字特定功能。一组五个授权主题的基本模型对本研究收集的检查关键字数据集进行了培训和测试。该模型在分类任何授权检查员的关键字时达到了95.3%或更高的平均准确性。它在扬声器分类中的平均准确性为99.2%。由于该模型从合并的培训数据中学习的更丰富的关键字表示,因此将基本模型调整为新检查员只需要该检查员的少量培训数据,例如每个关键字五个话语。在验证授权检查员和76.1 \%的检测中,使用说话者分类分数进行检查员验证可以达到至少93.9%的成功率。此外,本文展示了所提出的模型对公共数据集上的大型组的适用性。本文为解决AI辅助人类机器人互动面临的挑战提供了解决方案,包括工人异质性,工人动态和工作异质性。
translated by 谷歌翻译
个性化联合学习认为在异质网络中每个客户独有的学习模型。据称,最终的客户特定模型是为了改善联合网络中的准确性,公平性和鲁棒性等指标。但是,尽管该领域有很多工作,但仍不清楚:(1)哪些个性化技术在各种环境中最有效,以及(2)个性化对现实的联合应用程序的真正重要性。为了更好地回答这些问题,我们提出了Motley,这是个性化联合学习的基准。 Motley由一套来自各种问题域的跨设备和跨核管联合数据集组成,以及彻底的评估指标,以更好地理解个性化的可能影响。我们通过比较许多代表性的个性化联合学习方法来建立基准基准。这些最初的结果突出了现有方法的优势和劣势,并为社区提出了几个开放问题。 Motley旨在提供一种可再现的手段,以推进个性化和异质性的联合学习以及转移学习,元学习和多任务学习的相关领域。
translated by 谷歌翻译
在本文中,我们在半监督对象检测(SSOD)中深入研究了两种关键技术,即伪标记和一致性训练。我们观察到,目前,这两种技术忽略了对象检测的一些重要特性,从而阻碍了对未标记数据的有效学习。具体而言,对于伪标记,现有作品仅关注分类得分,但不能保证伪框的本地化精度;为了保持一致性训练,广泛采用的随机训练只考虑了标签级的一致性,但错过了功能级别的训练,这在确保尺度不变性方面也起着重要作用。为了解决嘈杂的伪箱所产生的问题,我们设计了包括预测引导的标签分配(PLA)和正面验证一致性投票(PCV)的嘈杂伪盒学习(NPL)。 PLA依赖于模型预测来分配标签,并使甚至粗糙的伪框都具有鲁棒性。 PCV利用积极建议的回归一致性来反映伪盒的本地化质量。此外,在一致性训练中,我们提出了包括标签和特征水平一致性的机制的多视图尺度不变学习(MSL),其中通过将两个图像之间的移动特征金字塔对准具有相同内容但变化量表的变化来实现特征一致性。在可可基准测试上,我们的方法称为伪标签和一致性训练(PSECO),分别以2.0、1.8、2.0分的1%,5%和10%的标签比优于SOTA(软教师)。它还显着提高了SSOD的学习效率,例如,PSECO将SOTA方法的训练时间减半,但实现了更好的性能。代码可从https://github.com/ligang-cs/pseco获得。
translated by 谷歌翻译
射频和深度学习在自动胶质瘤分级中显示出很高的普及。辐射瘤可以提取手工制作的特征,定量描述胶质瘤等级的专家知识,深度学习在提取促进最终分类的大量高吞吐量功能方面是强大的。然而,随着它们的互补优势尚未充分调查和整合,仍然可以提高现有方法的性能。此外,通常需要病变图来进行测试阶段的最终预测,这是非常麻烦的。在本文中,我们提出了专业知识引导的几何表示学习(录音)框架。手工制作功能和学习特征的几何歧管构建为挖掘深度学习和辐射族之间的隐性关系,从而挖掘相互同意和胶质瘤等级的必要表现。通过专门设计的歧管差异测量,分级模型可以更有效地利用输入图像数据和专家知识,并在测试阶段摆脱病变分段图的要求。拟议的框架是关于要使用的深度学习架构的灵活性。已经评估了三种不同的架构,并比较了五种模型,表明我们的框架总能产生有前途的结果。
translated by 谷歌翻译
前列腺成像报告和数据系统(PI-RAD)基于多参数MRI类\ ^ EES患者分为5类(PI-RADS 1-5),用于常规临床诊断指导。但是,无论pi-rads 3患者是否应该经过活组织检查,都没有共识。这些硬样品(HS)的采矿功能对于医生来说是有意义的,以实现准确的诊断。目前,HS Biomarkers的采矿是Insu \`的,并且HS Biomarkers用于前列腺癌诊断的e \'助力性和稳健性尚未探讨。在这项研究中,构建了来自DI \'EERENT数据分布的生物标志物。结果表明,HS Biomarkers可以在DI \'EERENT数据分布中实现更好的性能。
translated by 谷歌翻译
知识蒸馏(KD)是一种广泛使用的技术,将繁琐的教师模型继承到紧凑的学生模型,从而实现模型压缩和加速度。与图像分类相比,对象检测是一个更复杂的任务,设计特定的KD方法用于对象检测是非微小的。在这项工作中,我们精心研究教师和学生检测模型之间的行为差​​异,并获得了两个有趣的观察:首先,教师和学生对其检测到的候选盒子相得益彰,这导致了它们的精确差异。其次,教师和学生之间的特征响应差异和预测差异之间存在相当大的差距,表明同样模仿老师的所有特征映射是提高学生准确性的次优选。基于这两个观察,我们提出了用于分别蒸馏单级探测器的测量模拟(RM)和预测引导的特征模仿(PFI)。 RM从教师那里夺取候选人盒的等级作为一种新的知识形式,蒸馏,这始终如一地优于传统的软标签蒸馏。 PFI试图将特征差异与预测差异相关,使特征模仿直接有助于提高学生的准确性。在MS Coco和Pascal VOC基准测试中,广泛的实验在不同骨干的各种探测器上进行,以验证我们方法的有效性。具体而言,具有Reset50的RetinAnet在MS Coco中实现了40.4%的图,比其基线高3.5%,并且还优于先前的KD方法。
translated by 谷歌翻译